Temperature-Dependent Asymmetry of Anisotropic Magnetoresistance in Silicon p-n Junctions

نویسندگان

  • D. Z. Yang
  • T. Wang
  • W. B. Sui
  • M. S. Si
  • D. W. Guo
  • Z. Shi
  • F. C. Wang
  • D. S. Xue
چکیده

We report a large but asymmetric magnetoresistance in silicon p-n junctions, which contrasts with the fact of magnetoresistance being symmetric in magnetic metals and semiconductors. With temperature decreasing from 293 K to 100 K, the magnetoresistance sharply increases from 50% to 150% under a magnetic field of 2 T. At the same time, an asymmetric magnetoresistance, which manifests itself as a magnetoresistance voltage offset with respect to the sign of magnetic field, occurs and linearly increases with magnetoresistance. More interestingly, in contrast with other materials, the lineshape of anisotropic magnetoresistance in silicon p-n junctions significantly depends on temperature. As temperature decreases from 293 K to 100 K, the width of peak shrinks from 90° to 70°. We ascribe these novel magnetoresistance to the asymmetric geometry of the space charge region in p-n junction induced by the magnetic field. In the vicinity of the space charge region the current paths are deflected, contributing the Hall field to the asymmetric magnetoresistance. Therefore, the observed temperature-dependent asymmetry of magnetoresistance is proved to be a direct consequence of the spatial configuration evolution of space charge region with temperature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunneling anisotropic magnetoresistance in Fe/GaAs/Au junctions: orbital effects

We report experiments on epitaxially grown Fe/GaAs/Au tunnel junctions demonstrating that the tunneling anisotropic magnetoresistance (TAMR) effect can be controlled by a magnetic field. Theoretical modelling shows that the interplay of the orbital effects of a magnetic field and the Dresselhaus spin-orbit coupling in the GaAs barrier leads to an independent contribution to the TAMR effect with...

متن کامل

Anisotropic magnetoresistance and anisotropic tunneling magnetoresistance due to quantum interference in ferromagnetic metal break junctions.

We measure the low-temperature resistance of permalloy break junctions as a function of contact size and the magnetic field angle in applied fields large enough to saturate the magnetization. For both nanometer-scale metallic contacts and tunneling devices we observe large changes in resistance with the angle, as large as 25% in the tunneling regime. The pattern of magnetoresistance is sensitiv...

متن کامل

Anisotropic tunneling magnetoresistance and tunneling anisotropic magnetoresistance: Spin-orbit coupling in magnetic tunnel junctions

The effects of the spin-orbit coupling SOC on the tunneling magnetoresistance of ferromagnet/ semiconductor/normal-metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance TAMR are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interfer...

متن کامل

Magnetic viscosity measurements reveal reversal asymmetry in exchange-biased bilayers

We have used time-dependent magnetization measurements to probe the asymmetry in the magnetizationreversal mechanisms in exchange-biased MnF2 /Fe bilayers. Analysis of the magnetic viscosity on the magnetizing and demagnetizing sides of the exchange-shifted hysteresis loops reveals a striking asymmetry. This is due to different mechanisms for reversal on the two sides of the loop as elucidated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015